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Energy stability of the buoyancy boundary layer 

By JOSEPH J. DUDIS AND STEPHEN H. DAVIS 
The Johns Hopkins University, Baltimore, Maryland 

(Received 20 July 1970) 

The critical value RE of the Reynolds number R is predicted by the application 
of the energy theory. When R < RE, the buoyancy boundary layer is the unique 
steady solution of the Boussinesq equations and the same boundary conditions, 
and is, further, stable in a slightly weaker sense than asymptotically stable in 
the mean. The critical value RE is determined by numerically integrating the 
relevant Euler-Lagrange equations. Analytic lower bounds to RE are obtained. 
Comparisons are made between RE and R,, the critical value of R according to 
linear theory, in order to demark the region of parameter space, RE < R .c R,, 
in which subcritical instabilities are allowable. 

1. Introduction 
The stability of a given steady solution of the incompressible hydrodynamic 

equations over a region finite in at least one dimension can be examined using 
the method of energy (Serrin 1959). If the flow is characterized by a non- 
dimensional group of parameters, say, the Reynolds number R, the energy theory 
supplies a critical value RE of R. It is a suficient condition for asymptotic stability 
in the mean of the basic state that R < RE. This stability is against disturbances 
restricted only in certain smoothness requirements and in their behaviour in 
directions where the geometry of the flow goes to infinity (i.e. so that the energy 
integrals exist). Joseph (1965, 1966) and his co-workers (Joseph & Carmi 1966; 
Joseph & Shir 1966; Shir & Joseph 1969) have extended these results to fluid 
systems involving heat transfer and subject to the Boussinesq approximation. 

A suficient condition that the basic state be unstable can be found using linear 
theory. When the terms quadratic in disturbance quantities are neglected com- 
pared to linear ones, one can obtain a critical value RL of R. When R > RL, the 
basic state is unstable. 

For that region of parameter space, RE < R < RL, instability (called sub- 
critical instability) is not ruled out, but its existence must be an effect of Jinite 
amplitude. WhenR, - RE (whichmust be positive) is small, and the eigenfunctions 
corresponding to RL and RE are in some sense ‘close ’, then one can have con- 
fidence that both the linear and energy theories have reasonably captured the essential 
physics of the onset. The ideal case is encountered in BBnard convection subject 
to the Boussinesq approximation. Joseph (1965) has shown in this case that the 
governing equations of the two theories are identical, so that RE = RL and thus 
that subcritical instabilities are forbidden. When the Boussinesq equations are 
slightly modified, for example, by the inclusion of constant distributed heat 
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sources (Joseph & Shir 1966), RE 9 RL, but still RL-RE is small, Serrin (1959) 
also found this to be the case in the problem of the instability of Couette flow 
between rotating cylinders. Davis (19694  has found certain suficient conditions 
that RL - RE be small, and their corresponding eigenfunctions be ‘ close ’ for a 
class of systems including those given above. These conditions depend on the 
symmetry properties of the time-independent linear operator of the disturbance 
equations and on the form of the non-linearities. Davis (1969b) has shown that 
the energy theory is applicable to surface-tension driven motions, and found that 
RL -RE can again be small in certain situations. 

The success, in this sense, achieved in convective, centrifugal and surface- 
tension driven motions, in obtaining RE and RL of comparable magnitude as 
well as their corresponding eigenfunctions ‘ close ’, has not been echoed in shear 
flow instability studies. For example, linear theory seems to predict stability 
(i.e. RL = m) for plane Couette and Hagen-Poiseuille flows, while the energy 
results are for plane Couette flow RE = 41.3 (Joseph 1966) and for Hagen- 
Poiseuille flow RE = 81-49 (Joseph & Carmi 1969). In the latter case, the ex- 
perimental value seems to be about 2100. What physical balance determines 
onset here 1 

The linearized theory can predict instability of two types. There is an inviscid, 
inflexional instability (Rayleigh’s theorem) associated with a local maximum of 
the magnitude of the basic vorticity gradient (Lin 1955). If the basic flow is 
inviscidly stable, it can still become unstable through the existence of a critical 
layer (Lin 1955). The only energy theory application to flows with inflexion points 
is that of Carmi (1969), who considered classes of pseudo-parallel channel flows. 
All other shear flow applications have been on flows which are either inviscidly 
stable as is plane Poiseuille flow, or else on flows for which the Rayleigh criterion 
fails altogether. In  these cases, there seems little relation between the values of 
RL and RE. This is perhaps due to the fact that the critical layer mechanism of 
importance in the linear theory is absent in the Euler-Lagrange equations that 
emerge from the energy theory. 

One of the purposes of the present analysis is the application of the theory to a 
basic flow having points of inflexion. This flow is, according to linear theory, 
inviscidly unstable, and it is the hope that, if in this case the values of RL and RE 
are comparable, the physical utility of the energy theory in shear flow problems 
would be more fully appreciated. This hope is indeed borne out (see also Carmi 
1969). In  the course of this application, several modifications in the usual pro- 
cedures are necessitated, since the buoyancy boundary layer flow domain has 
no finite dimension. As a result, several previously used estimates now fail and 
the definition of stability when R < RE must be slightly weakened. Furthermore, 
the universal stability criterion (Serrin 1959) fails. A new set of lower bounds for 
RE is found. 

The physical problem treated here, the buoyancy boundary layer, represents 
an exact solution to the Boussinesq equations of motion. Prandtl’s (1952) 
‘mountain and valley winds in stratified air’ contains this solution as a special 
case when the surface under consideration is vertical rather than slanted. The 
specific solution used here was given in Gill (1966) in connection with the problem 
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of thermal convection in a rectangular cavity (see also Batchelor 1954). It is an 
approximation to the solution at the vertical midpoint of the cavity, far away 
from the horizontal walls at the top and bottom of the cavity. Solutions of 
similar form have been found by Barcilon & Pedlosky (1967) for vertical boundary 
layers of rotating, strongly stratified systems. The boundary layer thickness was 
found to be of order E*(PX)A where the Ekman number E = v/!2L2, v is the 
kinematic viscosity, f2 is the vertical component of rotation, L is a length scale, 
Pis the Prandtl number and S measures the vertical stratification. The buoyancy 
boundary layer consistently recurs in stratified fluid systems sustaining horizontal 
temperature gradients. 

A linear stability analysis has been carried out by Gill & Davey (1969). They 
considered only two-dimensional disturbances (although, as they note, Squire’s 
theorem is not applicable) and computed RL numerically as a function of the 
Prandtl number. They thus obtained a sufficient condition, R > RL, that the 
buoyancy layer be unstable; but, since three-dimensional disturbances cannot 
be excluded, their values of RL may be conservatively high. Gill & Davey (1969) 
have also shown that, while for large Prandtl numbers the instability is buoyancy 
driven, for small Prandtl numbers the flow is hydrodynamically unstable due to 
the points of inflexion in the basic flow field. The previously mentioned test for 
the energy method can then be made. 

The values RE given by the energy method are obtained numerically from 
integration of the Euler-Lagrange equations. These are compared to the linear 
theory of Gill & Davey (1969), and also to the experimental work of Elder (1965) 
on the instability of the vertical boundary layer in the convective flow in a 
rectangular cavity. 

2. The basic flow and temperature fields 
The basic state is an exact solution of the Boussinesq equations. The system 

represented by these fields consists of a fluid of mean density po (when at  a 
temperature To) occupying the space x > 0 bounded by an infinite vertical wall 
located at  x = 0. The acceleration due to gravity (acting vertically downward, 
in the negative z-direction) g = (0, 0, - g ) ,  the coefficients of kinematic viscosity 
v, thermal diffusivity K and volume thermal expansion a are all assumed constant. 
The basic state is a uni-directional boundary layer flow against a stable linear 
vertical stratification. The basic stratification is established by requiring the 
temperatures of the solid boundary at  x = 0 and the fluid at  x -+ a0 to vary 
linearly with z, Gz where G > 0. The motion is driven by a horizontal temperature 
difference AT between the wall and infinity at  each height z. 

The Boussinesq equations (including a linear equation of state) governing 
the problem are the following: 

(2.1 a-c) I av 
at - + V .  VV = - V@/pO) + [ I -  a(T - To)] g + vV2V, 

aT -+V.VT = KV~T, 
at 

V.V = 0. 
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The boundary conditions are given by 
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V = O ,  T=AT+Gz on x = O ,  
V-tO, T+Gz as x - f c o .  

(2 . ld,e)  

The relevant solution of system (2.1) is called the buoyancy boundary layer, 
and was given by Gill (1966) as follows: 

u =  V E O ,  

W = V, e-@ sin (z/L),  
T = (AT) e-z'L cos ( x / L )  + Gz, 

where the velocity vector V = ( U ,  V ,  W ) ,  the pressure is denoted by p ,  

L = ( 4 v ~ l a g G ) t  and V, = (ctqK/vG)&AT. 

(2.2 u-c) 

3. The energy and entropy identities 
We shall now develop the energy and entropy identities for disturbances to 

the basic state (2.2). Following Joseph (1965), let (V, T,p) be the solution of the 
basic state, and let (V*, T*, p*)  be any other solution to the Boussinesq equations 
and boundary conditions (2.1). Now let 

u = (u, 21, w) = v* - v, 

n = p * -  P. 
+ = T"-T, (3.lu-c) 

(u, 6, T )  represents the difference between the disturbed and undisturbed states. 
Since both (V, T,p)  and (V*, T*,p*) satisfy system (2.1), we can obtain the 
system governing the disturbances : 

I au 
-+ at u .  vu + v. vu +u.  vv = - V(n/po) -&q5 + vvzu, 

9 + u .  V $  + V  .v+ + u .  VT = K v ~ + ,  
at 

v . u  = 0, 

u=+=O on x = O ,  

u , + + o  as x+w.  I 
We shall henceforth confine our attention to disturbance functions u, v, w, q5, n 
which belong to the class 9: 

f is either 
(i) periodic in y and z, 

(ii) Fourier transformable in y and z,  

(iii) periodic in either y or z and Fourier transformable in the other.] (3.3) 
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For functions in F, we define the integral over a volume Y by 
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in case (i) where kandl are the wave-numbers in they and z directions respectively. 
For case (ii), s,f = J:-m/:=-ml:=o fax dy dz. 

For case (iii), the integral will extend over a wavelength in the co-ordinate in 
which the functions are periodic, from -a to 00 in the co-ordinate in which 
they are Fourier transformable and from 0 to  00 in x. 

We define jaYfas  the integral off over the surface of the rectangular parallele- 

piped whose appropriate dimensions (depending upon whether we have cases 
(i), (ii) or (iii)) extend to infinity. 

We now form the scalar product of ( 3 . 2 ~ )  with u, multiply (3 .2b)  by $ and 
integrate over Y.  We employ Green’s theorem, ( 3 . 2 ~ )  and the fact that all the 
integrals over aY vanish and obtain the identities: 

where 

dK - = -~v[u.D.u+ag.u$+vVu:Vu], 

at 

at 

[$u. V T  + KV$. V$], 
n n 

I (3 .4a ,  b )  

(3 .4c ,d )  

(3 .4e )  

and subscripts z denote differentiation. These identities are precisely those 
of Joseph (1965)’ except that now the volume Y extends to infinity in the 
x-direction. 

We non-dimensionalize these identities using the following scales: length N L, 
velocity N V,, temperature N A T ,  time N L2/v where L, V, and A T  are defined 
below (2 .2) .  We obtain 

(3 .5a ,  b )  

dK 
- at = -jY [Ru.D.u+2f.u$+Vu:Vu], 

Jv [PR$u. V T  + V$ . V$], a@ p- = - at 
where f = (0, 0, - l), the Reynolds number R is defined by 

and the Prandtl number P is P = Y / K .  The scaled basic state is given by 

R = V , L / V  = A T ( ~ L x ~ K ~ / v ~ G ~ ) ~  

W = e-zsinx, ’I 
T = e-zcosx+-- PR ’ 

(3 .5c ,  a) 

25 F L M  47 



386 

and the strain rate tensor is 
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(3.5e) 

Since we will be using only non-dimensional variables henceforth, we have not 
distinguished between dimensional and non-dimensional quantities. 

4. The maximum problem 

and define the ‘energy’ functional 
One would usually now introduce (Joseph 1965) the coupling parameter h 

E, = g + a m  ( A  > 01. 
The requirement h > 0 ensures that K and 0 will approach zero if and only if 
E, does. One could then establish a variational principle in which the eigenvalue 
R, gives the stability criterion for a given A. That is, if R < R,, stability, in the 
sense to be defined, is guaranteed for that A. One could then postulate that all 
dependent variables are analytic functions of A, use parametric differentiation, 
and obtain the optimal value A* of A. This optimal value gives 

R,, = SUP R,. 

One would then use h = A*, and have the optimal stability boundary BE = RA8. 
However, there are certain problems for which the assumption of analyticity 
is unfounded. The simplest case is of BBnard convection heated from above 
(stably stratified; Shir & Joseph 1968). In this case, there is a singularity in the 
dependent variables at h = 1. This is manifested in the prediction A* = - 1 in 
violation of the restriction h > 0. Shir & Joseph (1968) also find this to be the 
case in thermohaline convection when the thermal field is destabilizing, but the 
concentration field is stably stratified. When this procedure was applied to the 
present problem, we were able to obtain formally an expression for A*. When 
P -+ 0, we found that A* -+ - 1, while for other values of P it seemed as though 
A* would again be negative. Since it Seems as though there is again a singularity 
characteristic of situations having a stably stratified diffusive field, we shall 
henceforth restrict our attention to the case h = 1. At worst, this restriction will 
yield a stability condition which is correct but too conservative, while at best 
we will obtain the optimal stability boundary. The reader interested in the 
derivation of A* is referred to Dudis (1970). 

We can obtain an expression for the rate of change of El by adding (3.5a, b ) .  

A 

where 

and 

3 = -Dl+RIl,  
at 

(4 . la)  

(4.lb) 

( 4 . 1 ~ )  



Energy stability of the buoyancy boundary layer 

From (4.la), we can write 
dE1 - = - ( ~ - R & ) D .  
dt 

It follows from (4.2) that 

whenever the maximum problem (M) is satisfied: 

Rzl = max 11, 
Y 

Dl = 1, 

Y = {u, $lu, $ have continuous second partial derivatives, V . u = 0, 

u = $ = O  on x = O  and u , w , w , $ E ~ ] .  

We now reach a point of departure from previous analyses. The proof that the 
basic motion is asymptotically stable in the mean when R < RE does not now 
follow in the same way since previous proofs were dependent on the existence 
of positive numbers a: and a; in the following inequalities: 

and 

c L 

Since we are now dealing with a domain inJinite in all dimensions, these inequalities 
fail. In  fact, we do not have stability in the same sense as before. 

If R < RE in the time interval [0,  T I ,  then if follows from (4.3) that 

If El(0) is bounded, then (4.4) implies that E1(7) is uniformly bounded in T.  

It then follows that D, + 0 as r -+ 00, in the sense that 

lim D,dt < oo. (4.5) 
r+m 

Because the fluid is incompressible, this implies that the disturbance vorticity 
approaches zero as T -+ co in the above sense. A further implication follows: 

Even though inequalities (I) fail to hold, since V has no finite dimension, the 
following weaker inequalities are valid: Let be a rectangular parallelepiped 
bounded in the x-direction with the wall x = 0 as one of its boundaries. The 
extent in the y- and z-directions is either a wavelength or the whole real line 
depending on which case of class 9 is being considered. Then, there exists positive 
numbers a; and 6; such that 

and 
r r 

25-2 
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Since 9 c V ,  we have that 
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(4.6a, b )  

If we combine (11) with (4.6), we obtain that 

D, 2 E2&, (4.7~) 

where E2 = min (a:, 6iP-1) and d, = [u. u + PqP]. (4.7b) 

From (4.5) we have that I?, --f 0, in the sense that 

We sum up : For any fixed value of P, if R < RE, then we have stability of the 
basic state defined by D, -+ 0 as r -+ co in the sense of (4.5). If p i s  a rectangular 
parallelepiped defined as by (11), then the definition of stability further means 
that PI + 0 as r + 00 in the sense of (4.8). Furthermore, if R < BE, then the 
buoyancy boundary layer represented by (2.2) is the unique steady solution of 
the Boussinesq equations and boundary conditions (2.1 d, e )  over the class of 
functions 9. 

It is worth mentioning that the weakened stability criterion could be 
strengthened to asymptotic stability in the mean, if we were to insert a second 
'distant ' boundary parallel to the first. The basic state would then be altered as 
would the numerical value of RE. 

5. The Euler-Lagrange equations 
The maximum problem (M) is equivalent to the following variational equation: 

where R and p(x ,  y, z )  are Lagrange multipliers resulting from the normalization 
D, = 1 and the condition V . u = 0. The variations are taken over the extension 
of Y formed by relaxing the condition V . u = 0. The consequent Euler-Lagrange 
system is as follows: 

Ru.D++RP+T,i = -Vp+V2u ,  

(5.2a-c) I $RPT,u = V2$, 

v.u = 0, 

with the boundary conditions 

u = + = O  on z=O, 

u,$+O as x-tco,  
(5.2d, e )  
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and i = (1,0,0). The smallest positive eigenvalue of R of system (5.2) gives the 
sufficient condition for stability which we seek. For if we let (u, $,p)  be a solution 
of (5.2), take the inner product of u with (5.2a), the product of $ with (5.2b) 
and add, the result is 

11 lY [u.D.u+Pu$T,] =--I),. R 

If we use the normalization condition D, = 1 and the definitions of D, and I,, 
we have that 

The problem of determining the stability boundary (for h = 1) for the buoyancy 
boundary layer reduces to finding 

RE = minposR; 

1/R = I,. (5.3) 

and we have stability and uniqueness in the above sense if R < RE. 

6. A n  Q priori bound by parametric differentiation 
Let us assume that the eigenvalue RE(P) and (u(z, y, z ;  P),  $@, y, z ;  P)) ,  which 

solve the maximum problem (M) and the equivalent Euler-Lagrange system 
(5.2), are continuously differentiable functions of the Prandtl number P. Then, 
we have that 

Proof 
Let (u, #) be a solution corresponding to RE for any fixed value of P. Consider 
two such solutions, and label them with subscripts. From (5.2), we can find: 

If we form the sum (a)  - (b) + (c) - (d), and allow the solutions to coalesce, we 
obtain 

dREJv U . D . U + d(REP)JY T,U$. 

We solve for dRE/dP and find 
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If we use relations ( 4 . 1 ~ )  and (5.3), we obtain 

s = R g /  dP Y Tzuq5. 

The result (6.1) follows from the equation obtained by multiplying (5.2b) by 
+ and integrating over V .  

We can obtain a priori bounds on RE as a function of P through (6.1). First, 

since IY Vq5. Vq5 is positive definite, it follows that 

(6.2) 

0 

P 
FIGURE 1. A priori bounds to  R,(P). RE lies in the shaded region. 

Secondly, from D, = 1 we have that Vq5. V$ < 1. It follows that sy 

If we integrate (6.3) from some initial value (Po, R,(Po)) to (P,  R,(P)), we have 

A priori bounds (6.2) and (6.4) are illustrated in figure 1; the exact R,(P) lies 
in the shaded region. 

7. Improved lower bounds for the stability boundary 
In  our discussion of the definition of stability, we mentioned that a slightly 

weaker definition was required when dealing with a flow domain no dimension 
of which is finite. The mathematical reason is that the inequalities (I) (see below 
(M)) required for the stronger condition fail to hold in this domain. This same 
failure has another consequence. A universal stability criterion (Serrin 1959) is 
no longer obtainable. As a result, we shall now seek another method of obtaining 
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stronger lower bounds on R,(P) than established in § 6. To this end, we rewrite 
the maximum principle (M) : 

Ril(P)  = m;xIl, 

Dl= 1. 

One means of obtaining a lower bound on RE is to maximize 11, subject to D, = 1,  
over a space larger than 9'. One way of obtaining such an extension is to relax 
the restriction V.  u = 0. We can define q, 

= {u, $lu, $ have continuous second partial derivatives, 

u = $ = 0 onx  = 0 and u,v ,  w, $,E$}, 

and we have that 9, 3 9'. (7.1) 

R;1 = supI,, (M 1) 

As a result of (7.1), we can define Rw by 

9 1  

D, = 1, 

and we have the relationships that 

and R, = infposR. This extension gives rise to an equivalent set of Euler- 
Lagrange equations as follows: 

Rw < RE, ( 7 4  

+RWXw+ +RPTx$ = V'U, 

0 = v2v, 

gRw,u = VZW, 

&RPT,u = V'$, 
with the boundary conditions 

I u = $ = O  on x = O ,  

u,q5+0 as x-+co .  

The mean value theorem for harmonic functions gives that v 
A still lower bound can be obtained analytically. Consider 

0. 

I, = -sy [Kuw + PTxuq5]. 

Il can be conveniently rewritten in the form, 

I1 = - S y < . B . L  

where r = (u, v, w, $1, 

and 

0 0 W, PTx 

PT, 0 

(7.3a-d) 
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The eigenvalues of B are 0 and f $( Wz + P2T:)*. We thus have that 
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Since Wx < JZe-” and Tx < 42ecX, we have that 

Define R,, by R L  = SUP J1, D, = 1. (M2) 

We now have that R,, < R, < RE. (7.4) 

9 1  

The Euler-Lagrange equations for (M2) reduce to a single scalar equation for, 
say, u: 

V ~ U  + @[2( 1 + P2)]9 e-xu, 

where 
u=O on x = O , c o ,  

Rww = inf R. 
- 

For the periodic case in 9, we can write 

u = Re {$2(x) exp [i(ky + Zz)]}. 

When u is Fourier transformable, we can write 

= /:m/:m C(x)  exp [i(ky + Zz)] dkdl .  

In  either case (or in the mixed case ( c ) ) ,  we arrive at the same equation for $2, viz. 

(7.5a, b )  

where m = (kz+Z2)3. 
This system can be transformed into the Bessel equation by letting 

r = edx,  

which maps the x interval [0, co] into the r interval [l, 01. The eigenfunction is 
J,,(pr) subject to the eigenvalue relationship, 

(7.6) p = {2W[2( 1 + P2)]4) 

for all values of the overall wave number, m, m =k 0 as long as /3 is a zero of JzA. 
Equation (7.6) thus determines all the eigenvalues of R as a function of m. Since 
B,, = infR, we need to use the lowest zero p of J2,. The first zero of J,, is 
a continuous function of m and is a monotone decreasing function of m, the 
limiting value approaching 2.405 (Watson 1944) as m -+ 0. The minimum is not 
attained, however, since J, does not satisfy the boundary condition as r --f 0; 
only lim J2,(/3r) need be found. Thus, we have that 

m+O 
f2Bm[2( 1 + P2)]4]* = 2.405, 

and hence that R,, = 2*04(l +PZ)-Q. (7.7) 
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The relation (7.7) gives a lower bound to RE. As a test of the numerical scheme 
to be used later (Runge-Kutta-Gill, see appendix A), the system (7.5) was 
numerically integrated. Furthermore, the better lower bound R, governed by 
system (7.3) was computed numerically and it was found that the ratio R,/R,, 

Numerical - f- 
P RW PRW 

0.0 4.05 0.00 
0.1 4.03 0,403 
1.0 3-09 3.09 

10.0 0.418 4-18 
100.0 0.0420 4.20 

1000~0 0.00420 4.20 

Analytical - 
2.04 0.00 
2-03 0.203 
1.45 1.45 
0.203 2.03 
0.0204 2.04 
0 * 0 0 2 0 4 2.04 

RW, PRWW 

TABLE 1. Lower bounds R ,  and Rww for vttrious values of P.  

P 

FIGURE 2. The stability boundaries; R E ( ~ D ) ,  R E ( ~ D )  and R L ( ~ D )  as functions of P .  

was about two. As is evident from (7.7), and as was also found for R, numerically 
for large values of P ,  R, - P-l and R,, - P-l. This is a distinct improvement 
over the a priori bound of $6, which was N P-2. In fact it later develops that our 
numerical computation for RE gives RE N P-l as P -+ 00 as well. Thus, we have 
listed the values of PR,, and PR, as functions of P in table 1 as well as the 
values of R,, and R,. Figure 3 indicates R, and R,, as functions of P. 
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The method of generating lower bounds to RE by relaxing the restriction 
V . u = 0 is not confined to the problem considered here, but could be used quite 
generally. The advantage is that one could quickly obtain the lower bound 
analytically merely by solving a Sturm-Liouville problem such as (7 .5) .  

100.0 

10.0 

R 

1.0 

0.1 1 .o 10.0 

P 
FIQURE 3. The stability boundaries and lower bounds for large P ;  

R E ( ~ D ) ,  R E ( ~ D ) ,  R,, R,, and R L ( ~ D ) .  

8. Properties and solution of the Euler-Lagrange equations 
8.1. Reduction to ordinary differential equations 

Let us now express those functions in 9 as in (7 .5) .  The Euler-Lagrange system 
(5.2), in these cases becomes the following: 

where 

+RWx&+&RPTx$ = -D@+(D2--m2)a, 

0 = -ik@+(D2-m2)3, 
gRWxa = - il@ + (D2 - m2) &, 

+RPTxB = ( 0 2  - m2) $, 

J on x =  0, 
X + W ,  

(8 .  la-g) 



Energy stability of the buoyancy boundary layer 395 

For a given value of P and given values of k and I, let us denote the smallest 
positive eigenvalue of R of system (8.1) by B(P; k, I). 

0 = -ik$+ (D2-mz)0, 
0 = -il$+ (D2-m2)@, 

8.2. Symmetry properties 
For fixed P,  R(P; k ,  1) satisfies the following symmetry relations: 

I B(P; k, 1)  = R(P; - k, I ) ,  
R ( P , k , l )  = R(P; k, - 1 ) .  

Relation (8.2a) can be obtained from the transformation, 

D& + i(k0 + 12) = 0, 

& = 8 = 0 = $= 0 on x = 0, 

(8.2a, b )  

(k ,  1, a, 8, @, $, 13, fi) -+ ( - k,,I,, ~ 1 ,  - ~ 1 ,  ~ 1 ,  $1 ,~1 , -@ 

of system (8.1). From this we see that 2 = R. Similarly, relation (8 .2b)  can be 
obtained from the transformation 

(k , l , a ,8 ,@,$ ,@,R) -+  (hi, -11, -uT,vT, -w?, -$T, -P:,B) 

of system (8.1), where the asterisk denotes the complex conjugate. 
The symmetry conditions (8.2) indicate that in the eventual numerical solu- 

tion of system (8.1) it is sufficient that one search only the first quadrant of the 
k - I plane in order to find the smallest positive eigenvalue of R. 

where the product R P  -+ C (constant) as P -+ 00. For large P ,  then, the constant 
C becomes the eigenvalue. The asymptotic behaviour 2 N CP-l for large P 
is precisely the same as that found in 9 6 and 9 7 for the lower bounds R, and Rm. 
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A version of Squire's theorem can be found in the large Prandtl number limit. 
Consider the transformation of system (8.3): 

iL.v = k0 + ld, 

@,$, PI = (a, $9 $1. 

- 
k2 = k2+E2, 

The resulting system has the form 

#JTx$ = - Dp + (D2 - m2) Z, 

o = - i i p + ( W - m 2 ) ? ,  

+CTxU = (D2-mz)$, 

? i = ; i s = $ = O  on x = O ,  

U,V, iZ ,$+O as x+ 0. 

DU + iLC = 0, 
- 

The above system gives the minimum positive eigenvalue of C as a function of 
E = (P+k2)4 .  This system is precisely that of (8.3) with I = 0. 

This result indicates that as P +- 00 the R,(P) for two and the general three- 
dimensional problems should merge together. 

8.4.  Numerical scheme 

Let us transform system (8.1) into a set of eight first-order, complex linear 
equations (appendix B) of the form, 

Duj = Ajkuk+iBikulc (j = 1 ,  ..., 8), (8.4) 

where we sum over repeated subscripts k = 1, . . ., 8, and A ,  and Bjk are real 
functions of x, k, 1, R, P. 

By decomposing uj into real and imaginary parts, 

uj = Sj+iQj (j = 1, ..., 8), 

system (8.4) can now be written as a system of sixteen real, linear, first-order 

(8.5a, b )  

Due to the coupling present in the decomposition of system (8.4) only half, or 
eight, need be found in order to determine the complete sixteen linearly in- 
dependent solutions. To see this, let us denote {(Sj, Q i ) [ j  = 1,2, . . ., 8}by {(Sf, Qj)} 
and let {(gi, ai)} be a solution to (8.5). Then, 

(CSj, Qj)) {(a$, -gj3)} 
is also a solution. These can be seen to be linearly independent of the first set. 

of R such that {(Xi, Qi)} satisfy (8.5) and the boundary conditions 

equations (appendix B), DSi = A,.,S, - B .  Q 

DQj = A j k Q k  + BjkS,. I" "'I 

_ -  _ -  

We wish to determine for fixed values of P, k, 1 the minimum positive value B 

S j = Q i =  0 on x =  0, 

Sj,Qj+O as x+00 ( j= l ,  ..., 8).  
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(We choose the first four S, and Q3’ to correspond to the real and imaginary parts 
of &, 0, a, 6 respectively (see appendix B)). 

were known, they would satisfy con- 
ditions at x = 0 of the form, 

If the correct eigenfunctions {(f l j , 

This solution has been arbitrarily normalized to  make (g3’, g3’) = (0,l). 
We can represent the ((R3’, Of).,> in terms of eight (in fact only four, as discussed 

above) independent solutions of initial value problems. The solutions to the 
initial value problems denoted by {(Sj”), Qik’)lk = 1,2,3,4} satisfy the equations 
(8.5) and the following initial conditions: 

k = l  k = 2  k = 3  k = 4  

Xik’, j = 1, ..., 8 0 0 0 0 

Q$”),j = 1, ..., 4 0 0 0 0 

QLk) 1 0 0 0 

Qi“) 0 1 0 0 

Qi”) 0 0 1 0 

QL”) 0 0 0 1 

In  terms of these solutions, we can express the exact eigenfunctions as follows: 

flj = a,Sy) + a2Q(jl)+ a3Sr’ + a4Q(j2) + a6Si3) + a6Qp) + Sf+) 
= ...”). (’“) 

Qi = a1Q~l)-azS~1)+a3Q~’-a4S:2)+a 

We replace the boundary conditions for x + 03 by (appendix B) 

(8.9) 
M3fl. 3 = M30.  3 = 0 (j = 1,2 ,3)  as x-+zl, 

and MR4 = MQ4 = 0, as x-+xl. 

In  reality the conditions should be applied as x1 + 00. Numerically, it was found 
that z1 = 8 was large enough that increasing its value left the value of .R un- 
changed in the fifth significant digit. The application of conditions (8.9) to (8.8) 
at  z = x1 yields eight inhomogeneous algebraic equations for the six unknowns 
ai, i = 1, ..., 6 as follows: 

al M3S(jlJ + a, M3QF) + a3 M3Sy) + a4 M3Qi2) + a3 M3Sp) 

a1 MS;’) + a, MQkl) +a3 MSh2) + a4 MQL2) + a5 MSh3) 

a, M3Qi1) - a, M3Sy) + a3 M3Qy) - a4 M3Si2) + a5 M3Qi3’ 

a, MQbl) - a, M S f )  + a3 MQL2) - a4 MSi2) + a5 MQk3) 

+a6M3Q$) = -M3S!4) 

+ a 6  MQL3’ = - MSi4’, 
(8.10) 

-a, M38‘3) = - M3Q(P) 
3’ 

- a, MSi3) = - MQL4) 

For a given R, P, k and 1 the only unknowns are the a,’s. 
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We first solve for the ai, using six of the equations (j = 1,2 ,4)  and using another 
six (j = 1,3 ,4) .  In general, the two sets of ai’s are not compatible. They are only 
compatible if we have used the correct value of R = fi. 

Our numerical scheme is as follows: 
(1)  Fix P, k, 1. 
(2) Set R = 0. 
(3) Numerically integrate equations (8.5) four times corresponding to initial 

conditions (8.7). 
(4) Compute the coefficients of the ad in (8.10) at some 5 = xl. 
(5) Calculate both sets (as defined above) of a,. Denote the differences by Sai. 
(6) Increase the value of R and repeat starting at (3). 
(7) When R has been increased sufficiently, all the Sad will change sign between 

successive guesses of R. 
(8) Linear interpolation was used to find the correct value fi and also the 

correct ai. 
(9) With this correct fi and a,, i = 1, ..., 8, equations (8.5) were integrated 

subject to initial conditions (8.6) in order to check that the correct asymptotic 
behaviour (8.9) was present. 

(10) With the correct value of R(P; k, 1 )  computed (for fixed P )  we sought 
RE = inffi(P; k, I )  for k, 1 2 0. 

The numerical integration used was the Runge-Kutta-Gill method (Ralston & 
Wilf 1960). The step size Ax was automatically adjusted by a subroutine to 
keep the integration difference between using Ax and 2Ax within a prescribed 
tolerance. This tolerance was chosen so that the value of 2 showed no change 
in the third significant digit as the tolerance was decreased. The final value 
x1 = 8 was used. No significant difference (fifth significant digit) in R could be 
detected numerically by choosing a larger terminating value. 

k, I 

9. Results and conclusions 
The object of the numerical analysis was to find the values R,(P). When 

R < RE(P), the buoyancy boundary layer is asymptotically stable in the mean 
over rectangular parallelepipeds bounded in x, and having the wall as one of 
its boundaries, and is additionally the unique steady solution of the governing 
equations over the class 9. 

Easily accessible lower bounds to R,(P) were developed by solving the maxi- 
mum problem (M) over a space of functions not restricted by V . u = 0. These 
lower bounds R, turned out to be about a factor of six lower than RE and can be 
obtained from the solution of a Sturm-Liouville problem. Simpler lower bounds 
R,, were found analytically at about a factor of two below R,. In  both cases, 
the asymptotic behaviour at P -+ 03 of R,(P) and R,,(P) was P-l, the same as 
that of RE(P). Lower bounds of this form are easily obtained in other applications 
of the energy theory but are especially useful here since a universal stability 
criterion (Serrin 1959) is not obtainable. This is due to the fact that the flow 
domain has no finite dimension. 
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The linear theory of Gill & Davey (1969) was restricted to two-dimensional 
disturbances (k = 0). The first numerical calculation for the energy limit RE 
was for two-dimensional disturbances. These results are listed in table 2 and in 
figures 2 and 3 denoted by RE(2D). The asymptotic behaviour at P + co is 
RE(2D) N P-l, whereas Gill & Davey find that R,(2D) N P d .  For 0 < P ,< 10, 
the values of RE(2D) are between one-third and one-fourth those of R,(2D). 

For general three-dimensional disturbances it was sufficient due to the sym- 
metry relations in $8.2 to search the wave-number plane only in the first quadrant 
k, I 2 0. It was found that RE corresponded to 1 = 0 within numerical accuracy. 
All critical Reynolds numbers are accurate to within k 1 in the third significant 
digit. Since for fixed P the curve a ( P ;  k ,  I )  is very flat in the vicinity of RE, the 

Energy, three- 
dimensional (I = 0) 

Energy, two- 
dimensional (k = 0) 

P 
0.0 
0.1 
0.72 
1.0 
3.0 
5.0 

10.0 
co 

7 , 
k RE pRE 

0.44 23.3 0.0 
0.45 23.2 2.32 
0.45 19.7 14.2 
0.55 17.5 17.5 
0.80 7.55 22.7 
0.85 4.63 23.1 
0-85 2.33 23.3 
0.85 0.00 23.3 

> 

1 RE PRE 

0.50 43.9 0.0 
0.50 43.3 4.33 
0.70 27.2 19.6 
0.70 21.3 21.3 
0.85 7.72 23.2 
0.85 4.66 23.3 
0.85 2.33 23.3 
0.85 0.00 23.3 

Linear, two- 
dimensional 

(k = 0) 
& 

I RL 
0.62 141 
0.59 109 
0.29 101 
0.28 76.1 
0*35* 25.5* 
0.39 15.5* 
0.44 8.50 
0.42 0.00 

TABLE 2. Comparisons of RE(2D), RE(3D) and RL(LD) for various values of P .  Asterisks 
indicate an interpolation of Gill & Davey’s data. 

accuracy of the critical wave-number is only to A 0.05. However, it is plausible 
that RE corresponds to 1 = 0 exactly since 1 = 0 is a surface of symmetry of a. 
As can be seen from table 2 and figures 2 and 3, for small P ,  RE(3D) differs from 
RE(2D) by afactor of two but for large P ,  say P > 3, the results of the two calcula- 
tions merge. This was in fact predicted in 8 8.3 where for P + co, a Squire’s 
theorem was valid. Thus, again RE(3D) - 23.3P-1 for P + co. 

For a given Prandtl number P, subcritical instabilities of the buoyancy 
boundary layer are allowable when R satisfies RE < R < R,. It is clear in the 
buoyancy boundary layer for small values of P that RE and RL are of the same 
order of magnitude. It is in this region that the instability is of inflexional type 
so that the hope expressed in the introduction that the energy method could 
give physically interesting results in a shear flow instability is borne out. The 
region broadens greatly as P gets larger since RE and RL have different asymptotic 
behaviours. It is in this region that the instability is buoyancy driven. The 
computed region RE < R < R, certainly contains all possible subcritical in- 
stabilities. However, the allowable region may in fact be smaller. First, the 
Gill & Davey result for R,  is only an upper bound to the linear theory critical 
value of R, since they consider only two-dimensional disturbances (no Squire’s 
theorem holds). Secondly, the value of RE computed herein may only be a lower 
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bound to the optimal energy stability limit for R. This is possible since we 
confined our attention to the linking parameter h equal to one. 

The only experimental evidence is Elder's (1965) examination of the buoyancy 
boundary layer in a vertical slot. He obtained a crude empirical formula from 
his results of the form R, = 2OOP-p. This seems closer to the energy rather than 
the linear result asymptotically for large P but has too large a coefficient. 

Although one should be cautious in attributing physical significance to the 
eigenf'unctions of the energy theory (since they are solutions to  Euler-Lagrange 
equations and not hydrodynamic equations), let us interpret these in physical 
terms. Since R,(3D) corresponds to I = 0, the energy theory selects a mode which 
has velocity and temperature fields independent of x ,  i.e. independent of the 
direction of the basic flow W(z) .  The wavelength preferred is smaller than for 
linear theory for large P, while larger than linear theory for small P .  

0, G 2 =  0, 8, = 0, 

$1 = 0, $2 = 0, $3 = 0, 
0 4 ,  = 1, DB2 = 0, DB, = 0, 

DQ1 = 0, D 8 ,  = 1, Dd3 = 0, 
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Appendix A. Numerical scheme for the integration of the Euler- 
Lagrange equations without divergence-free restriction 

The Euler-Lagrange equations (7.3) can be written as a system of six linear 
first-order differential equations after separation of variables (see above, equa- 
tions (8. l)). The eigenfunctions B, 8, $ (0 = 0 )  can be written as a linear combina- 
tion of three linearly independent solutions 

(4, 8, $1 = a(%, 0 1 ,  $1, + WL, $2) + 4 4 3 , & 3 ,  $31, (A 1) 

It can be seen from (A I) and (A 2 )  that 

B , & , $ = o  on X = O .  

Asymptotically, for large x, we want a, 8, $ to approach zero and it can be 
seen from (7.3) that the decaying solution is given by 

B, 8, $ - e-mx. 
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We therefore define M as follows : 

M = D + m  

and we take as the boundary condition for large x that 

A =  

401 

M a ,  Map; Na31 M a ,  = 0 at x = xl. 

Wl ~4~ ~ 4 ~ 1  

Da = - ikG - iE&, \ 

DO = 8 + ma, 
Dul= b^+mul, 

D$ = e+m$, 
D8 = ik@ -ma, 

0 6  = il@ - mb̂ + iRKa, 
De = -mi?++PRT,a, 

Appendix B. System of real, linear, first-order equations employed in 
solution of the eigenvalue problem 

If  we define the variables 

(B 2) 
) 

8 = (D-m)O, 

b̂  = (D-m)&,  
2 = (D-m)&,  

(B 1 a-C) 

This complex system can be converted to a real system of sixteen equations by 
breaking into real and imaginary parts. 

26 F L M  47 

The eigenvalue problem reduces to finding the smallest positive value R, 
of R for which A -+ 0 as x1 -+ CQ. The procedure for a fixed rn > 0, is to start with 
R = 0 and to increase it until A changes sign (for x1 fixed). The value of RE) is 
found by repeated linear interpolation. The procedure was repeated for a different 
positive m and the infRF) was calculated. As in the case of computing Rw, the 

infRLm) was approached asymptotically as m -+ 0. Various values of the ter- 

minating value x1 were tried and it was found that the values R, and R,, were 
insensitive for the value of x1 for xI 2 8, 

m 

m 
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0 = -ikfj+(D2-m2)6, 

0 = - i l f j + ( P - m 2 ) a ,  

0 = ( D 2 - ~ s )  $, 
0 = Df2 + ik6 + ila, 

) 

In  this limit, the temperature disturbance $become decoupled from the velocity 
disturbance, and we have 

$8 N e f m .  

The decaying solution thus satisfies 

where 

M$+O as x- foc) ,  

M = D + m .  

The remaining variables are governed by a linear, complex system of constant 
coefficient equations whose solutions have the form, 

4 

(a, a, a, fj) = evx (uo, vo, wo, Po), 

where the subscripted quantities are constants. The substitution of this into 
(C 1) yields a non-trivial solution if the determinant of coefficients vanishes. The 
result of this is as follows : 

( ~ ~ - - m 2 ) ~  = 0. 

For large x, the real and imaginary parts of (6 ,6 ,8 , i j )  must satisfy 

M3(4i, 6, a, @) -+ 0, 
in order that (C 1 f )  hold. 
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